If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+16p+7=0
a = 1; b = 16; c = +7;
Δ = b2-4ac
Δ = 162-4·1·7
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{57}}{2*1}=\frac{-16-2\sqrt{57}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{57}}{2*1}=\frac{-16+2\sqrt{57}}{2} $
| 6x-6+x=-55 | | 2x+x4=9x-6x+4 | | 1.2/6=8/x | | n/4+1=5 | | 4(t-2)=10 | | 6j+4=2(3j+2) | | F(-1)=x^2+3x-5 | | 6j+4=2(3j+2 | | 2.2=z+11 | | 4x=7+3(2x−5) | | 120=3x+7x=10 | | -1/2x^2-7/4x-9/2=0 | | 50=5(4x+2) | | 4/7+p=5/7 | | 2x+11=5x+35=180 | | (x+3)^2=-49 | | -6x-3+3x=-9 | | 3x+x/2=4 | | 7x+33x-5=10(4x=+5) | | -3z-1=+2z-1 | | -11=4x-5x-6 | | 3-6x=-45 | | 3x-2x=-16-9 | | 7=2y+1 | | b-6=2(6/2-3) | | -8-6x+3x=-44 | | 22=-7(7+4p)-(-5p-2) | | -3x+7+7x=19 | | 0.20x+0.35(70)=37.5 | | a-100=-16a-15 | | -139=2a+5(3+4a) | | 11/24(2x-1)=4 |